Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
نویسندگان
چکیده
Cross-sectional imaging of an electrical conductivity distribution inside the human body has been an active research goal in impedance imaging. By injecting current into an electrically conducting object through surface electrodes, we induce current density and voltage distributions. Based on the fact that these are determined by the conductivity distribution as well as the geometry of the object and the adopted electrode configuration, electrical impedance tomography (EIT) reconstructs cross-sectional conductivity images using measured current-voltage data on the surface. Unfortunately, there exist inherent technical difficulties in EIT. First, the relationship between the boundary current-voltage data and the internal conductivity distribution bears a nonlinearity and low sensitivity, and hence the inverse problem of recovering the conductivity distribution is ill posed. Second, it is difficult to obtain accurate information on the boundary geometry and electrode positions in practice, and the inverse problem is sensitive to these modeling errors as well as measurement artifacts and noise. These result in EIT images with a poor spatial resolution. In order to produce high-resolution conductivity images, magnetic resonance electrical impedance tomography (MREIT) has been lately developed. Noting that injection current produces a magnetic as well as electric field inside the imaging object, we can measure the induced internal magnetic flux density data using an MRI scanner. Utilization of the internal magnetic flux density is the key idea of MREIT to overcome the technical difficulties in EIT. Following original ideas on MREIT in early 1990s, there has been a rapid progress in its theory, algorithm and experimental techniques. The technique has now advanced to the stage of human experiments. Though it is still a few steps away from routine clinical use, its potential is high as a new impedance imaging modality providing conductivity images with a spatial resolution of a few millimeters or less. This paper reviews MREIT from the basics to the most recent research outcomes. Focusing on measurement techniques and experimental methods rather than mathematical issues, we summarize what has been done and what needs to be done. Suggestions for future research directions, possible applications in biomedicine, biology, chemistry and material science are discussed.
منابع مشابه
Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging
This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological ...
متن کاملUniqueness and Convergence of Conductivity Image Reconstruction in Magnetic Resonance Electrical Impedance Tomography (MREIT)
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a new medical imaging modality providing high resolution conductivity images based on the current injection MRI technique. In contrast to Electrical Impedance Tomography (EIT), the MREIT system utilizes the internal information of current density distribution which plays an important role in eliminating the ill-posedness of the inver...
متن کاملMagnetic resonance electrical impedance tomography at 3 Tesla field strength.
Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross-sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting object when an electrical current is injected into the object. In this ...
متن کاملMagnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.
The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of vol...
متن کاملElectrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT).
Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross-sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In thi...
متن کاملA Matlab Toolbox for Magnetic Resonance Electrical Impedance Tomography (MREIT): MREIT Toolbox
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new imaging technique that allows tomographic imaging of electrical conductivity of biologically conductive objects. In this paper, we present software that has been implemented to accompany MREIT. The software offers various computational tools from preprocessing of MREIT data to reconstruction of crosssectional conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological measurement
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2008